Pedestrian Attribute Recognition with Graph Convolutional Network in Surveillance Scenarios
نویسندگان
چکیده
منابع مشابه
Pedestrian Detection with Deep Convolutional Neural Network
The problem of pedestrian detection in image and video frames has been extensively investigated in the past decade. However, the low performance in complex scenes shows that it remains an open problem. In this paper, we propose to cascade simple Aggregated Channel Features (ACF) and rich Deep Convolutional Neural Network (DCNN) features for efficient and effective pedestrian detection in comple...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملPedestrian Color Naming via Convolutional Neural Network
Color serves as an important cue for many computer vision tasks. Nevertheless, obtaining accurate color description from images is non-trivial due to varying illumination conditions, view angles, and surface reflectance. This is especially true for the challenging problem of pedestrian description in public spaces. We made two contributions in this study: (1) We contribute a large-scale pedestr...
متن کاملGraph Based Convolutional Neural Network
In this paper we present a method for the application of Convolutional Neural Network (CNN) operators for use in domains which exhibit irregular spatial geometry by use of the spectral domain of a graph Laplacian, Figure 1. This allows learning of localized features in irregular domains by defining neighborhood relationships as edge weights between vertices in graph G. By formulating the domain...
متن کاملTensor graph convolutional neural network
In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute graphs. Especially, we propose a graph preserving layer to memorize salient nodes of those factorized subgraphs, i.e. cross graph convolution and grap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Future Internet
سال: 2019
ISSN: 1999-5903
DOI: 10.3390/fi11110245